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Terms and Definitions  

Acronym Definitions Comment 

ASIL Automotive Safety Integrity Level see ISO 26262:2018-1 

DC Diagnostic Coverage see ISO 26262:2018-1 

EFR Early Failure Region see section 2 

FIT Failure In Time a unit that represents failure rates and 
how many failures occur every 109 
hours 

FR Failure Rate the frequency with which an 
engineered system or component fails 
expressed in failures per unit of time 

HTOL High-Temperature Operating Life a reliability test 

IFR Intrinsic Failure Region see section 2 

LFM Latent Fault Metric see ISO 26262:2018-1 

MTBF Mean Time Before Failure the average time between inherent 
failures of a mechanical or electronic 
system, during normal system 
operation 

PMHF Probability Metric for (random) 
Hardware Failures 

see ISO 26262:2018-1 

RUL Remaining Useful Life the length of time a machine is likely 
to operate before it requires repair or 
replacement 

SPFM Single-Point Fault Metric see ISO 26262:2018-1 

TTF Time To Failure amount of time an asset operates 
before it fails, equivalent to RUL 

WFR Wear-out Failure Region see section 2 
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1 Introduction 
Reliability and safety are crucial features of automotive platforms, and semiconductor chips used 
in these architectures should comply with the applicable requirements mandated by ISO 26262 
series of standards. The functional safety requirements are derived from the safety goals to reach 
“the absence of unreasonable risk due to hazards caused by malfunctioning behavior of 
electrical/electronic systems.” In the standard, the malfunctions are classified as systematic 
failures1 and random hardware failures. In this white paper, we consider the second type, which 
represents the failure appearing during the lifetime of the system due to random defects innate 
to the manufacturing or caused by operational conditions and usage. In addition, we describe the 
application of the time-to-failure (TTF) predictions in the context of estimation of the failure rate 
(FR), the subsequent improvement of the reliability of an electronic device, and the benefits of 
predictive and prescriptive maintenance methods.  
 
The net benefits of TTF predictions, embodied as software applications for predictive and 
prescriptive maintenance, are presented in the context of electronic device reliability metrics: 
failure rate reduction, diagnostic coverage improvement, and longer operational lifetime. These 
three key performance indicators (KPIs), whose limits are defined in functional safety standards 
for mission-critical applications, are shown to be enhanced by the proposed methodology.  
 
Upon TTF prediction of incoming permanent field defects, the predictive and prescriptive 
maintenance applications provide the actional insight to keep the fail-safe state of the system, 
which is fundamental for achieving the highest functional safety levels.  
 
This white paper covers the following: 

 Base failure rate calculation with TTF: For a given number of device samples, we consider 

not only the field failures in the cumulative failure fraction but also the predicted failures, 

to calculate the parameters of a Weibull instantaneous failure rate function, i.e., the 

failure rate of the intrinsic and wear-out regions of the reliability bathtub curve.  

 Reducing the failure rate by using predictive maintenance: Assuming we use the TTF 

prediction for predictive maintenance, we can remove a device from the field before its 

failure occurs. The cumulative failures are reduced and the number of device samples as 

well, with the impact of reducing the overall failure rate.  

 Extending lifetime by prescriptive maintenance: As the TTF prediction forecasts an 

expected failure within the useful lifetime of the device, the prescription of 

counteractions can postpone the loss of operations. The benefits of prescriptive 

 
1 These failures are deterministically induced by incorrect or flawed processes during development, manufacturing, 

or maintenance. 
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maintenance are shown in terms of a reduction of the failure rate in the operational 

lifetime, or conversely postponing the beginning of the wear-out region.  

2 FR Calculation Based on TTF Prediction  
The reliability curve of an electronic device assumes the so-called bathtub shape with steep sides 
and a flat center. It includes three parts2: (1) early failure rate (EFR) region, the first part is a 
decreasing failure rate; (2) intrinsic failure rate (IFR) region, the second part is an almost constant 
and much lower failure rate; and (3) wear-out failure rate (WFR) region, the third part is an 
increasing failure rate. 
 
The first region EFR is driven by gross defects, which are normally screened out by testing before 
shipment. Later in the field during the useful life we assume the failures are due to either (a) 
latent defects escaping the burn-in tests, (b) random defects or soft errors, such as transient 
faults caused by sub-atomic particle strike, and (c) material wear-out defects or failures caused 
by aging.  
 
In this paper, we are not going to consider further the failures screened at production but focus 
on the field failures after it. Nonetheless, it is worth mentioning that a sensitive outlier detection 
mechanism is expected to reduce the number of unscreened latent defects which escape the 
production3. Furthermore, we are going to discuss the permanent errors and defects, not the 
transient ones. 
 
By knowing the cumulative fraction of defective devices, it is possible to plot the number of 
failures vs. time in a Weibull chart and extract the characteristic Weibull parameters for shape 

() and scale (t63). The Weibull failure rate or hazard function:  

𝜆(𝑡)  =  
𝛽

𝑡63
(

𝑡

𝑡63
)

𝛽−1

 

In practice, we must consider the three regions as independent contributors and calculate the 
Weibull parameters using an individual liner fit in a log-log scale.  
 
In Figure 1, there is an example of the Weibull chart for a hypothetical set of data described in  
Table 1. 
 
 

 
2 Reference chapter 7 of J. W. McPherson “Reliability Physics and Engineering”, 2nd edition, Springer. 

3 See reliability tests described in “Quality and Reliability Manual” ISSI, chapter 3. For example, PAT Part Average 

Testing https://www.issi.com/WW/pdf/q_r_manual.pdf. 

https://www.issi.com/WW/pdf/q_r_manual.pdf
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TABLE 1 
Observed failure data for 5000 devices in total. 

 
Observed Failures 

Time 
(year) 

1 2 3 4 5 6 7 8 9 10 

N° of 
failures 

1 2 2 2 2 2 2 5 15 25 

 
 

 

Figure 1: Weibull chart of the IFR and WFR regions. 

 

We can extract from the chart the shape factor  as the slope of the logarithmic fit, and the scale 
factor t63 as the intercept with the y-axis.  
 
Let us consider the following two methods to calculate the reliability of a device: (a) collecting 
the empirical field data from the operational life of the device, or (b) accelerating the time-to-
failure process increasing the operating conditions.  
 
Assuming we can predict by when a device under observation is going to fail by monitoring the 
performances (also known as TTF). At any moment of the device’s lifetime, we can forecast the 
cumulative failure fraction distribution. In other words, the concept is to estimate the Weibull 
parameters by combining the observed and the predicted device failures.  
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As an example, let us assume that we are observing the same 5000 devices as described in Table 
2. However, instead of waiting 10 years to collect the field data, we can use the TTF prediction at 
an earlier moment, for example after four years. The failures after the fourth year are forecasted 
by knowing the remaining time before the failure of the device. In other words, TTF determines 
in which column of the table we count the predicted failure.  
 
As in any field-data analysis, how to split the data between the intrinsic and wear-out regions is 
an arbitrary choice, based only on the observation of a rapid increment of the number of failures. 
In the table example, we arbitrarily decided that the wear-out region starts when the predicted 
failures are double the average of the precedent years.  
 

TABLE 2 
Observed and predicted failure data for 5000 devices in total.   

After the fourth year, the data is predicted. 
 

Observed and Predicted Failures 

Time (year) 1 2 3 4 5 
 

6 7 8 9 10 

N° of observed 
failures 

1 2 2 2       

N° of predicted 
intrinsic failures  

    2 2 2    

N° of predicted 
wear-out failures 

       4 16 23 

 
We assume uniform data across time for the latent and random defects in the constant failure 
rate region, therefore the observed and predicted numbers shall be consistent and continuous, 
even if the observable degradation in performance could be very quick and without prior notice, 
therefore difficult to be predicted with accuracy. 
 
On the contrary, the wear-out effects are much slower and easier to be observed with the proper 
coverage of data. In this case, the predictions are typically more accurate, and several techniques 
are available, including model-based, analytical-based, or knowledge-based4 techniques. 
 
If we consider a reliability test such as high-temperature operating life (HTOL), it will determine 
the expected failure rate during the operating conditions. The JEDEC 22-A108 standard defines 
the minimum amount of devices that must be considered and the acceptance criteria (max 
number of accepted failures)5. The survivor devices in a reliability test may be on the verge of 
failure, but it would not be visible in the traditional pass/fail metrics. Using parametric 

 
4 For a survey of the techniques, "Overview of Remaining Useful Life Prediction Technologies.” C. Okoh et al. / 

Procedia CIRP 16 (2014) 158 – 163. 

5 See https://www.jedec.org/sites/default/files/docs/22A108D.pdf  

https://www.jedec.org/sites/default/files/docs/22A108D.pdf
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measurements of the performances and conditions of the device, it will be possible to estimate 
the incoming TTF and increase the confidence of the reliability assessment. 
 
In this section, we have covered: 

 The reliability curve and the best-known methods to estimate the characteristic 
parameters of this curve, i.e. failure rate calculation. 

 Failure rate estimation of a device by considering the predicted failures TTF to anticipate 
the field data of an uncomplete data set, such as after a few years of a new device in the 
market and much before the device's end of life. The early availability of such data can 
play a key role in the quantitative functional safety analysis (e.g. FMEDA) of new systems, 
which use new technologies for the first time and are not extensively proven in the field 
yet.  

 
 

 

Figure 2: Chart of parametric data of device health vs. lifetime in hours (taken from "Overview of 
Remaining Useful Life Prediction Technologies.” C. Okoh et al.). The degradation over time of the health 
index can be used to estimate the remaining useful life (shown as RUL in the picture) before a failure. 
RUL and TTF are equivalent in our case.  
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3 FR Reduction by Predictive Maintenance  
The ISO 26262 series of standards defines four different Automotive Safety Integrity Levels (ASIL), 
as shown in Table 3. Depending on the ASIL, the hardware architectural metrics should be 
calculated and fulfilled, including single-point fault metric (SPFM), latent fault metric (LFM), and 
probabilistic metric for hardware failure (PMHF), which defines the failure rate target of the 
system, or of the hardware element of the system.  
 

TABLE 3 
ISO 26262 Automotive Safety Integrity Levels (ASIL) 

 
ASIL SPFM LFM PMHF 

A Not relevant Not relevant < 1000 FIT 
B ≥ 90% ≥ 60% < 100 FIT 

C ≥ 97% ≥ 80% < 100 FIT 

D ≥ 99% ≥ 90% < 10 FIT 

 
Under the term “predictive maintenance”, we consider all the techniques which are designed to 
forecast the root cause of an incoming in-service device failure and when it will happen. The main 
promise of predictive maintenance is to allow convenient scheduling of maintenance services or 
preventive actions and to counteract potentially safety related device failures and operational 
downtime. In this regard, a predicted failure never develops into an actual failure, which can be 
considered in the field data of the reliability studies. We propose to remove such devices from 
the field data, reducing both the number of observed devices and actual failures. 
 
In Table 4, we present a numerical example. We assume that the predictive maintenance is 
capable to detect k=50% of the imminent faults, which can be both intrinsic/latent or wear-out 
failures. We also assume that there is a false-positive rate of h=10%, which can also spoil the 
quality of the results. Namely, if F is the real number of devices that are going to fail in the future 
of a sample size of N devices, the total number of predictions P is equal to:  
 

Predicted failures, P = (k*F + h*(N-F)) 
 
Table 4 shows the hypothetical results of an application characterized by 50% detection and 
h=10%. At every yearly prediction, the predicted devices were removed from the field whether 
the prediction is correct or not, reducing the number of observed failures.  
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TABLE 4 
Observed failures with and without predictive maintenance. 

 
Observed Failures and Predictive Maintenance 

Time (year) 1 2 3 4 5 
 

6 7 8 9 10 

N° of observed 
failures without 
predictive 
maintenance 1 2 2 2 2 2 2 5 15 25 

N° of observed 
failures with 
predictive 
maintenance 1 0 2 1 1 2 1 2 8 13 

 

In the example proposed, we observe that the shape parameters are not dramatically changed 
as we expected, but the scale parameter of the IFR region of the case with predictive 
maintenance is twice bigger in comparison to the case without prediction.  
 
As a result, if we set the reliability requirement with a limit of 100 FIT, our example shows that 
the useful lifetime of the device is extended from almost 7 years to 8 years. Alternatively, the 
residual failure rate in the useful lifetime area is significantly improved by 20-50% FIT, which is a 
remarkable reliability improvement. See Table 5 for the Weibull parameters and Figure 3 for the 
reliability curves. 
 

Table 5 
Weibull parameters with and without predictive maintenance.  

Parameters 
Without predictive 
maintenance 

With predictive 
maintenance 

Intrinsic FR region 
b  1,302 1,196 

t63 (years) 638 1585 

Wear-out FR region 
b 9,902 11,008 

t63 (years) 15,9 16,1 
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Figure 3: Reliability chart shows the combination of the three contributors, early, intrinsic, and wear-out 
regions for both cases, with and without predictive maintenance. 

 
In this section, we have covered: 

 The ability to reduce the in-service failures from the field data plays the same benefit as 

a preventive action, positively improving the robustness, reliability, and intrinsic failure 

rate. 

4 Failure Rate and Prescriptive Maintenance 
Prescriptive maintenance is a concept that collects and analyzes data to produce specific 
recommendations to reduce operational risks.  
 
At the core of both predictive and prescriptive maintenance, there is the use of sensors to collect 
data about the conditions and performances of a device, to monitor their behavior and evolution 
in time, and the ability to forecast their degradation to anticipate the occurrence of a fault.  
 
If predictive maintenance aims to prevent unexpected failures by repairing or removing the 
device promptly, the prescriptive concept recommends actions to change the future outcome by 
adapting the operational conditions of the device.  
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Some of the random hardware faults occurring in the intrinsic failure region are difficult to be 
predicted, if at all6. Therefore, it is even more difficult to avoid their outcome by changing the 
operational conditions. On the other hand, the aging of the device is typically a time-dependent 
effect and can be modeled as a continuous degradation of observable KPIs. By parametric 
measurements of characteristic health or performance indicators, it is possible to observe the 
impact of wear-out and predict their trend over time.  
 
The operational state of a device determines the device stress, therefore the aging speed. 
Let us consider what we can do to reduce the operational workload of a device in a given moment 
of its life, thus reducing the overall stress.  
 
It may not be possible to influence the external contributors, such as the ambient temperature, 
which may be fully independent and outside of our control. However, we may influence the other 
operational conditions impacting the operational state of the device, such as voltage and 
frequency, and the software application in execution. 
 
For example, we can change the software application utilization of hardware by restricting the 
number of software processes in execution or disabling non-essential jobs, or, for a computer 
architecture cable of dynamic voltage scaling, we can constrain the overvolting or minimum 
frequency. There are two main consequences—risk of failure reduction and performance drop.  
 
Such a strategy is similar to the so-called “limp-home mode” used in any modern electronic 
controlled combustion vehicle, when, in case of failures, the throttle is set to fast enough to get 
the transmission but not so fast that driving may be dangerous. The system’s safe state is 
maintained at the cost of a partial reduction of the system availability.  
 
In Figure 4, we are considering the same example as discussed in the previous section on FR 
Reduction by Predictive Maintenance In this case, the wear-out faults are delayed because we 
assume a reduction of the operational stress as soon the degradation is below a critical 
threshold to choose arbitrarily. If the reliability requirement is defined as FR<100 FIT, the 
resulting useful lifetime is extended from 8 to 9 years.  

 
6 i.e. soft error caused by secondary particles from cosmic rays.  
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Figure 4: The operational lifetime is defined by three main contributors: (1) The latent defects left 
unscreened after manufacturing, such as burn-in tests. (2) Random external events that can critically 
impact the device and cause an internal failure, such as alpha particle changing memory bits or 
electromagnetic interference (EMI) influences. (3) Early degradation of devices, which depends on how far 
is the average lifetime from the end of the operational lifetime and how wide is the standard deviation of 
the probability distribution. The duration of the operational lifetime in green depends on how long the 
failure rate of the system remains below the safety target, for example, FR<100 FIT.  We can notice how 
there is a notable extension of the useful lifetime with predictive and prescriptive maintenance as the FR 
remains lower 100 FIT for a much longer period. 
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5 Conclusions and Outlook 
Predictive and prescriptive maintenance are extremely promising approaches for preventing 
system breakdowns and unnecessary maintenance, nevertheless not exclusively in these regards. 
In this white paper, we presented the benefits of such techniques in the context of functional 
safety, under the premise that the ability to forecast hardware failure is not only a reliability or 
quality KPI, but it plays a crucial role in keeping the system in its safe state.  
 
In the latest edition of ISO 26262:2018-1, a safety mechanism is defined as a “technical solution 
implemented by E/E functions or elements, or by other technologies, to detect and mitigate or 
tolerate faults, or control or avoid failures, in order to maintain intended functionality, or achieve 
or maintain a safe state.” In our opinion, the keywords here are failure avoidance and maintaining 
a safe state. Yet, in the current edition of the standard for Functional Safety for Road Vehicles, 
the intention of the authors seems to focus on reactive safety by detection of a fault, rather than 
proactive safety by anticipating its occurrence.  
 
Let us consider the case of a hardware device, that according to the required metrics of the 
standard, is classified as ASIL-B out-of-context. As described in Table 3, the failure rate is under 
100 FIT (PMHF), and it has a 90% coverage by the safety mechanisms to prevent risk from single-
point faults in the hardware architecture (SPFM). What if, by the combination of predictive and 
prescriptive mechanisms, we would be able to reduce the actual failure rate below 10 FIT? By the 
current definitions, we would not be able to classify the system element at a higher ASIL, because 
the prognostic coverage (also known as the proportion of the hardware element failure rate that 
is forecasted and anticipated by the implemented predictive or prescriptive maintenance7) does 
not contribute to the SPFM or PMHF metric.  
 
The increased use of predictive and prescriptive maintenance methods could lead the industrial 
community to consider one of the following two proposals, or similar: 
 

1. Define separate hardware architectural metrics dedicated to predictive and 
prescriptive maintenance coverage and account for them in the final PMHF 
calculation. For example, this could be considered in the development of the next 
version of ISO 26262. 

2. Consider predictive and prescriptive maintenance in the calculation of the intrinsic 
failure rate ahead of SPFM, LFM and PMHF calculations. This proposal could be 
adopted today and could benefit those projects where, given higher complexity 
and area, minimum targets of SPFM and LFM still does not allow to meet the 
PMHF requirement for the system. 

 

 
7 A careful reader would notice that the definition of the prognostic coverage is modeled upon the diagnostic 

coverage definition 3.33 of the ISO 26262-1 standard. 
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Visibility from within electronics is an important trend in automotive, as in other domains, 
where IoT, connectivity, and the high number of sensors and data are becoming available and 
convenient. Continuous, in-mission mode health and performance degradation monitoring are 
the key elements for offering proactive safety. 
 
As in the past, it is expected to be a virtuous circle. As the technology is available, the limits are 
updated to push the industry into the adoption of the most advanced technologies and to 
sharpen the reliability requirements of standards and legislation.  
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